AnsweredAssumed Answered

Large Strain Option

Question asked by Bart Kemper on May 29, 2012
Latest reply on May 29, 2012 by Kevin Corr

I understand the "large strain" option in nonlinear (specifically for a von Mises material such as steel) is used when there is an "updated Lagrangian" formulation.  If I am following the theory, its essentially the element is distorted by the applied deflections in Step n, and in step n+1 a new strain is calculated based on the strain that occurred from n to n+1.  This is opposed to total Lagrangian modeling, which is there is the initial shape at n=0, and the strain is calcualted at n, n+1, n+2, etc. from n=0, which is computationally less intensive than updating the matrix each step.     


First of all -- am I tracking that much of the theory? 

Second -- while I understand that failing to turn on "large strain option" when you have large strain results in inaccuracies, is there an accuracy issue if you turn "large strain option" on and its not needed.

My specific issue is highly localized bending/shear/compression where there is not large displacement but there is large strain (above 5% as a peak value).  If I have it turned on, sometimes it doesn't solve all the way to the end whereas if I turn it off, it solves.  This is using 10 node tets (high order element).  There doesn't appear to be a signficant difference in stress, strain, or deflection in using the two options for the loads that do solve.